
The Towers of Hanoi
Kiyoshi Akima

k_akima@hotmail.com

2010.11.17

Contents
1 The Towers of Hanoi Puzzle 1

2 Solving the Towers of Hanoi 2
2.1 Recursion�Divide-and-Conquer . . . . . . . . . . . . . . . . . . 2
2.2 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Alternation . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.2 Binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.3 Gray Code . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 The Programs 4
3.1 RPL (HP 48G/49g/50g) . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 System RPL (HP 48G/49g/50g) . . . . . . . . . . . . . . . . . . . 6
3.3 RPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3.1 HP 35s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3.2 HP 30b . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.3 HP-16C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.4 HP-15C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 HP-BASIC (HP 38g/39g/40g) . . . . . . . . . . . . . . . . . . . . 13

i



1 The Towers of Hanoi Puzzle
Good puzzles provide an excellent way to log in to the realm of abstract thought
inhabited by mathematicians and other theorists. The best puzzles embody
themes from this realm; the signi�cance of such themes extends considerably
beyond the puzzles themselves.

One such classic puzzle, the Towers of Hanoi, suggest two pairs of contrasting
themes: recursion and iteration, unity and diversity. Apart from such serious
considerations, the puzzle is fun and also provides the neophyte with a satisfying
sense of confusion, hallmark of his or her slow entry into the realm of abstract
thought.

The Towers of Hanoi consist of three vertical pegs set in a board. A number
of disks, graded in size, are initially stacked on one of the pegs so that the
smallest disk is uppermost, as shown in Figure 1. The aim of the puzzle is to
transfer all the disks from the initial peg to one of the other two pegs. The disks
are manipulated according to these two simple rules:

1. Move one disk at a time from one peg to another.
2. No disk may be placed on top of a smaller disk.

Figure 1: Initial position

The smallest disk must be moved �rst since it is the only one that is initially
accessible. On the next turn there are two moves for the snallest disk (both
pointless) and one move for the second-smallest-disk. It goes onto the unoc-
cupied peg since it cannot be placed on top of the smallest disk (Rule 2). On
the third turn it is not quite so obvious what to do: should the second disk be
returned to the initial peg or should the �rst disk be moved again�and if so,
onto what peg?

From this point on one is faced with a long succession of moves and with
many opportunities for wrong choices. Even if all the right choices are made,
2n − 1 moves are needed (as we shall see below) to relocate a tower of n disks,
one at a time, onto another peg. The surprisingly long time required to solve a
puzzle made up of even a moderate number of disks is well illustrated by the fol-
lowing tale quoted from W. W. Rouse Ball's classic puzzle book, Mathematical
Recreations and Essays:

In the great temple of Benares. . . beneath the dome which marks
the centre of the world, rests a brass plate in which are �xed three
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diamond needles, each a cubit high and as thick as the body of a
bee. On one of these needles, at the creation, God placed sixty-four
discs of pure gold, the largest disc resting on the brass plate and the
others getting smaller and smaller up to the top one. This is the
Tower of Bramah. Day and night unceasingly the priests transfer
the discs from one diamond needle to another according to the �xed
and immutable laws of Bramah, which require that the priest on
duty must not move more than one disc at a time and that he must
place this disc on a needle so that there is no smaller disc below it.
When the sixty-four discs shall have been thus transferred from the
needle on which at the creation God placed them to one of the other
needles, tower, temple, and Brahmins alike will crumble into dust,
and with a thunderclap the world will vanish.

That the world has not yet vanished attests to the extreme length of time
it takes to solve the puzzle: even if the priests move one disk every second, it
would take more than 500 billion years to relocate the initial tower of 64 disks!

At this point (and at no risk to the universe) the reader can involve himself
or herself more directly by picking up �ve playing cards, for example the ace
through �ve of hearts, and visualizing three spots on a table. Stack the cards on
one of the spots, in order, so that the ace is on top. It is now possible to attempt
a solution to the �ve-disk tower puzzle by moving one card at a time between
two spots�but never place a card on one of lower value. Can you complete the
relocation of the �ve-card tower before the end of the world? According to the
formula 25 − 1, the transfer should be possible in 31 moves.

Of course, if you're reading this, you're more likely to reach for an HP
graphing calculator than a deck of playing cards. So, let's do just that.

2 Solving the Towers of Hanoi
How does one go about solving a puzzle such as this one? Well, there are several
ways, and this document will only touch upon some of them.

2.1 Recursion�Divide-and-Conquer
One technique for solving this problem is a strategy commonly called �divide-
and-conquer.� It consists of breaking a problem of size n into smaller problems
in such a way that from solutions to smaller problems we can easily construct
a solution to the entire problem.

The problem of moving the n smallest disks from A to C can be thought of
as consisting of two subproblems of size n − 1. First move the n − 1 smallest
disks from A to B, exposing the nth smallest disk on A. Move that disk from A
to C. Then move the n− 1 smallest disks from B to C.

So how do we move the n− 1 smallest disks from A to B?
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Well, we can do that by moving the n−2 smallest disks from A to C, exposing
the (n− 1)th smallest disk on A, moving that disk to B, then moving the n− 2
smallest disks from C to B.

See the pattern here?
Moving all n disks is accomplished by a recursive application of the method.

As the n disks involved in the moves are smaller than any other disks, we need
not concern ourselves with what lies below them on pegs A, B, or C. Although
the actual movement of individual disks is not obvious, and hand simulation
is hard because of the stacking of recursive calls, the algorithm is conceptually
simple to understand, to prove correct and, we would like to think, to invent
in the �rst place. It is probably the ease of discovery of divide-and-conquer
algorithms that makes the technique so important.

2.2 Iteration
It's also possible to solve the Towers of Hanoi puzzle without using recursion.

2.2.1 Alternation
Imagine the pegs arranged in a triangle. On odd-numbered moves, move the
smallest disk one peg clockwise. On even-numbered moves make the only legal
move not involving the smallest disk.

The above algorithm is consise, and correct. But in contrast to the earlier
divide-and-conquer algorithm, it is hard to understand how it works, and hard
to invent on the spur of the moment.

2.2.2 Binary
The source and destination pegs for the mth move can also be found elegantly
from the binary representation of m using bitwise operations. To use the syn-
tax of the C programming language, the mth move is from peg (m&m-1)%3 to
peg ((m|m-1)+1)%3, where the disks begin on peg 0 and �nish on peg 1 or 2
according as whether the number of disks is even or odd.

2.2.3 Gray Code
There is yet another algorithm for solving the Towers of Hanoi. If one numbers
the disks 1, 2, 3, . . . up to n in the usual manner from smallest to largest, it turns
out that each move in the puzzle's solution is indicated by a binary number. For
example, to solve the �ve-disk puzzle here for illustrative purposes, we would
list the �ve-bit binary numbers in the usual order of counting. The �rst nine
�ve-bit binary numbers are:
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decimal binary (disk)
0 00000
1 00001 (1)
2 00010 (2)
3 00011 (1)
4 00100 (3)
5 00101 (1)
6 00110 (2)
7 00111 (1)
8 01000 (4)

Each binary number that has a predecessor in the sequence also has exactly
one bit that has just changed from a 0 to a 1. The position of this bit (counting
from the right) is given by the decimal number written in parenthesis beside the
binary one. These numbers are also the numbers of the �rst eight disks moved;
the correspondence holds throughout the standard solution sequence.

There is an ambiguity in this solution. When we are to move the smallest
disk, there are two possible places to put it. However, this is solved in exactly
the same way as in the �rst iterative algorithm: always move the disk in the
same direction around the imagined triangle.

3 The Programs
This document presents a collection of programs for solving the Towers of Hanoi
puzzle. I make no attempt to cover every programming language on Earth,
instead concentrating on programming Hewlett-Packard handheld calculators.
I only present a sample of programs, showing di�erent methods. (Or maybe
the programs merely represent some of the calculators I happen to have.) If
you want to program the Towers of Hanoi for some other calculator, hopefully
one or more of these programs will prove useful as a starting point (and if they
don't, they don't).

I also make no claims regarding optimality. If you can make any of these pro-
grams faster and/or smaller, great. (If you can squeeze a Towers of Hanoi pro-
gram into the HP-19C/29C, I'd really, really like to see it.) Furthermore, these
programs are presented without any warranty or suitability for any purpose,
expressed or implied. Should any of these programs lock up your calculator,
cause loss of any data, or cause the world to vanish, don't blame me.
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3.1 RPL (HP 48G/49g/50g)
The recursive algorithm (Section 2.1) leads to a nearly trivial implementation
in RPL. Given a number on the stack representing the number of disks (which
actually could be larger than 64), the program proceeds to display letter pairs
representing the �from� and �to� pegs. The three pegs are labeled �S�, �D�, and
�T� for �source�, �destination�, and �temporary� respectively.

«

«

� n s d t

«

IF n 0. > THEN

n 1. - s t d �h EVAL

s d + 1. DISP

n 1. - t d s �h EVAL

END

»

»

� �h

«

"S" "D" "T" �h EVAL

»

»

For machines like those in the HP 48S series that do not have compiled local
variables, the embedded routine would have to be brought out as its own global
routine.

The iterative algorithms produce bigger, slower programs on this calculator.
This one is based on the Binary algorithm in Section 2.2.2. It works the same
way as the previous one, except that the pegs are numbered �1,� �2,� and �3�
instead of being named �S�, �D�, and �T� where the destination is �2� or �3�
depending on whether the number of disks is even or odd.

«

DEC 64 STWS

#1d 1. ROT START

DUP +

NEXT #1d - #0d

DO

DUP #1d + SWAP OVER

DUP2 AND DUP #3d / #3d × - #10d ×

UNROT OR DUP #3d / #3d × - #1d + DUP #3d / #3d × -

+ #11d + 1. DISP

UNTIL

DUP2 ==

END

DROP2

»
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3.2 System RPL (HP 48G/49g/50g)
A straightforward translation of the recursive UserRPL program into SysRPL
produces a program that's two-thirds the size and nearly twice the speed. Run-
ning on the HP 50g, this is the fastest program presented in this document.

!NO CODE !RPL

::

' ::

4NULLLAM{} BIND

4GETLAM %0> IT ::

4GETLAM %1- 3GETLAM 1GETLAM 2GETLAM LAM �h

3GETLAM 2GETLAM &$ DISPROW1

4GETLAM %1- 1GETLAM 2GETLAM 3GETLAM LAM �h

;

ABND

;

{ LAM �h } BIND

"S" "D" "T" LAM �h EVAL

ABND

;

@

3.3 RPN
RPN calculators come in a wide range of capabilities and styles. We're not going
to write programs for all of them, but hopefully we'll cover a representative
sample.

3.3.1 HP 35s
The HP 35s is HP's latest advanced scienti�c RPN calculator.

The RPN language doesn't lend itself easily to recursion, lacking local vari-
ables and an adequate subroutine return stack. That does not mean that recur-
sion is impossible, however. We just have to implement the recursion ourselves
using our own data and return stacks.

This program actually combines both stacks into one. Variable I points to
the top element on this stack. The two least signi�cant decimal digits of the
stack element are the destination and source pegs, respectively. The third digit
is the number of the temporary peg. The fourth digit tells the subroutine where
to return. The remainder of the stack element (which could be a number greater
than 64 as far as the program is concerned) is the number of disks to be moved.

The simulated subroutine starts at line H009, while lines H028-H036 handle
�guring out where to return to when the subroutine �nishes.

6



Given the number of disks in X, this program proceeds to display a sequence
of two-digit numbers on the bottom line of th display (you can and should ignore
the numbers on the top line). The tens digits represents the �from� peg, the units
digits represents the �to� peg. An output of zero signals program termination.

If the output is too fast, the PSE in step H040 may be replaced with a STOP,
in which case you'll need to press R/S to resume the program.

H001 LBL H H020 10 H039 RMDR H058 RCL(I)

H002 0 H021 XEQ H068 H040 PSE H059 1E4

H003 STO I H022 + H041 10 H060 ÷

H004 R� H023 10 H042 RCL(I) H061 IP

H005 1E4 H024 × H043 10 H062 1

H006 × H025 RCL(I) H044 XEQ H068 H063 -

H007 213 H026 1E2 H045 + H064 1E4

H008 + H027 GTO H056 H046 10 H065 ×

�H009 ISG I �H028 RCL(I) H047 × H066 +

H010 ABS H029 DSE I H048 RCL(I) H067 GTO H009

H011 STO(I) H030 GTO H033 H049 1E2 �H068 ÷

H012 1E4 H031 CLSTK H050 XEQ H068 �H069 IP

H013 x>y? H032 RTN H051 + H070 10

H014 GTO H028 �H033 1E3 H052 10 H071 RMDR

H015 x<>y H034 XEQ H068 H053 × H072 RTN

H016 XEQ H069 H035 x=0? H054 RCL(I)

H017 10 H036 GTO H028 H055 1

H018 × H037 RCL(I) �H056 XEQ H068 CK=7B2A

H019 RCL(I) H038 1E2 H057 + LEN=262

The ABS instruction in step H010 is a NOP. Arrows (�) preceeding step numbers
indicate destinations of branches, to aid in porting to a calculator that uses
labels.

We can also program the HP 35s to solve the puzzle using one of the iterative
algorithms. Despite the fact that the calculator limits binary numbers to 36
bits, we can implement the binary algorithm (Section 2.2.2) without too much
trouble: we simply have to split up the number into two registers. RA and RB

hold the loop counter, RC and RD hold the current move number, and RE

and RF hold the previous move number. We put the lower 34 bits into the �rst
register of each pair, making use of the fact that 234 mod 3 = 1 to avoid any
further bit-twiddling.

This results in a program that's slightly larger than the recursive version
above, but runs about twice as fast.

Given the number of disks in X, this program proceeds to display a sequence
of two-digit numbers on the bottom line of th display (you can and should ignore
the numbers on the top line). The tens digits represents the �from� peg, the units
digits represents the �to� peg. An output of zero signals program termination.
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If the output is too fast, the PSE in step I071 may be replaced with a STOP,
in which case you'll need to press R/S to resume the program.

I001 LBL I I024 RCL G I047 RCL C I070 +

I002 CLVARS �I025 1 I048 RCL E I071 PSE

I003 2 I026 - I049 AND I072 CF 0

I004 34 I027 STO A I050 + I073 RCL A

I005 yx �I028 RCL D I051 3 I074 x=0?

I006 STO G I029 STO F I052 RMDR I075 SF 0

I007 R� I030 RCL C I053 10 I076 FS? 0

I008 SF 0 I031 STO E I054 × I077 RCL G

I009 34 I032 1 I055 RCL D I078 1

I010 x�y? I033 + I056 RCL F I079 FS? 0

I011 CF 0 I034 STO C I057 OR I080 STO- B

I012 RMDR I035 RCL G I058 3 I081 -

I013 STO I I036 x�y? I059 RMDR I082 STO A

I014 1 I037 GTO I042 I060 RCL C I083 RCL B

I015 x>y? I038 1 I061 RCL E I084 OR

I016 GTO I021 I039 STO+ D I062 OR I085 x�0?

�I017 ENTER I040 CLx I063 + I086 GTO I028

I018 + I041 STO C I064 1 I087 CLSTK

I019 DSE I �I042 RCL D I065 + I088 RTN

I020 GTO I017 I043 RCL F I066 3

�I021 FS? 0 I044 AND I067 RMDR

I022 GTO I025 I045 3 I068 + CK=9E3C

I023 STO B I046 RMDR I069 11 LEN=283

3.3.2 HP 30b
The HP 30b is HP's most recent programmable �nancial calculator.

Even though it's a �nancial calculator, the HP 30b is perfectly capable of
handling this puzzle. It's not as if we're computing transcendental functions or
using complex arithmetic, after all.

Also, the HP 30b is blazing fast. This program is the fastest RPN program
presented in this document, lagging behind only the two recursive programs for
the HP 50g.

This program closely follows the scheme used by the simulated recursive HP
35s program given earlier in Section 3.3.1. So close that I won't bother even
attempting a line-by-line description. In fact, the HP 35s program was written
from this HP 30b program, which was based on an earlier HP 35s version (which
was based on. . . ).

Enter the number of disks then start the program. The program then pro-
ceeds to display a sequence of two-digit numbers. The tens digits represents the
�from� peg, the units digits represents the �to� peg. An output of zero signals
program termination.
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If the output is too fast, the Disp0 in line 58 can be replaced by a slower
display or even by a R/S. In the latter case, you'll have to press SHIFT+R/S to
resume the program.

1 Input 29 2 57 EEX 85 RCL Data
2 0 30 Call04 58 2 86 EEX
3 STO 0 31 + 59 * 87 4
4 R↓ 32 EEX 60 Disp0 88 /
5 EEX 33 1 61 EEX 89 Math
6 4 34 * 62 1 90 Up
7 * 35 RCL Data 63 RCL Data 91 Up
8 2 36 EEX 64 EEX 92 Input
9 1 37 3 65 2 93 1

10 3 38 Gto 03 66 Call04 94 -
11 + 39 Lbl 01 67 + 95 EEX
12 Lbl 00 40 RCL Data 68 EEX 96 4
13 ISG 0 41 DSE 0 69 1 97 *
14 CashFl 42 Gto 02 70 * 98 +
15 STO Data 43 ON 71 RCL Data 99 Gto 00
16 EEX 44 Stop 72 EEX 100 Lbl 04
17 4 45 Lbl 02 73 3 101 /
18 ?< 46 EEX 74 Call04 102 Math
19 GT 01 47 4 75 + 103 Up
20 Swap 48 Call04 76 EEX 104 Input
21 EEX 49 GT 01 77 1 105 EEX
22 1 50 RCL Data 78 * 106 1
23 Call04 51 EEX 78 RCL Data 107 *
24 EEX 52 2 80 EEX 108 Math
25 1 53 / 81 1 109 Up
26 * 54 Math 82 Lbl 03 110 Up
27 RCL Data 55 Up 83 Call04 111 Input
28 EEX 56 Input 84 + 112 RTN

length/checksum = 142.056
The CashFl instruction in line 13 is a NOP. Math Up Input is FP and Math Up
Up Input is IP.

3.3.3 HP-16C
Hewlett-Packard calls their HP-16C the �Computer Scientist.� While it only pro-
vides rudimentary �oating-point capabilities, it really shines at working with
bits. Its liquid-crystal display is capable of displaying integers in binary, oc-
tal, decimal, and hexadecimal. In addition to basic arithmetic it can perform
boolean operations, shifts and rotates with and without carry, and other opera-
tions of use to the assembly language programmer. Of course, it does conversions
between the aforementioned bases.

The 16C's powerful bit-twiddling capabilities allow us to produce surpris-
ingly short programs to solve this puzzle. This program implements the Binary
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iterative algorithm give in Section 2.2.2. Register RI holds the move counter,
R1 holds the current move number, and R0 holds the previous move number.

Put the number of disks into X and start the program, which will proceed
to display a series of two-digit numbers. The tens digits represents the �from�
peg, the units digits represents the �to� peg. An output of zero signals program
termination.
01 43,22, A LBL A 15 42 20 AND 29 42 3 RMD
02 42 3 UNSGN 16 3 3 30 40 +
03 0 0 17 42 9 RMD 31 1 1
04 44 0 STO 0 18 1 1 32 1 1
05 42 44 WSIZE 19 0 0 33 40 +
06 24 DEC 20 20 × 34 43 34 PSE
07 42 8 MASKR 21 45 0 RCL 0 35 45 1 RCL 1
08 44 32 STO I 22 45 1 RCL 1 36 44 0 STO 0
09 43,22, 1 LBL 1 23 42 40 OR 37 43 23 DSZ
10 45 0 RCL 0 24 3 3 38 22 1 GTO 1
11 1 1 25 42 3 RMD 39 43 35 CLx
12 40 + 26 1 1 40 43 21 RTN
13 44 1 STO 1 27 40 +
14 45 0 RCL 0 28 3 3

An even shorter program is possible for the Gray Code algorithm given in Sec-
tion 2.2.3 further illustrating the power and versatility of this calculator.

Steps 01 − 08 initialize the machine, setting unsigned mode so we don't
see negative disk numbers, placing the number of disks in R0, the �rst binary
number (0) in R1, and the move counter in RI . Steps 10 − 17 �nd the one bit
that changed from 0 to 1 and steps 18−21 determine its position, which is then
displayed in step 22 with a 'd' for �disk.� Step 23 decrements the loop counter
and step 24 loops back if necessary. When the solution is completed, steps 25−27
place a 0 in the display with an 'o' for �over� and halts the program. Unlike the
other programs in this collection, this one only shows the disk number, not the
�from� and �to� pegs.
01 43,22, b LBL B 10 45 1 RCL 1 19 45 0 RCL 0
02 42 3 UNSGN 11 45 1 RCL 1 20 34 x­y
03 44 0 STO 0 12 1 1 21 30 −
04 42 44 WSIZE 13 40 + 22 42 24 showDEC
05 43 35 CLx 14 44 1 STO 1 23 43 23 DSZ
06 44 1 STO 1 15 42 10 XOR 24 22 6 GTO 6
07 42 30 NOT 16 45 1 RCL 1 25 43 35 CLx
08 44 32 STO I 17 42 20 AND 26 25 OCT
09 43,22, 6 LBL 6 18 43 A LJ 27 43 21 RTN
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3.3.4 HP-15C
The HP-15C was a truly impressive calculator when it was introduced nearly
thirty years ago, and it's still a perfectly competent machine. Its built-in com-
plex arithmetic, matrix operations, numeric solver, and numeric integrator were
all pioneering capabilities. And all in a truly pocketable device with almost un-
limited battery life. (There are users who now are totally ba�ed by a blinking
symbol on the screen, never before having seen the low-battery indicator.)

Unfortunately, the HP-15C lacks the vast memory spaces of more recent
calculators. We could conceivably �t the entire data stack into the registers,
but then that wouldn't leave any memory for the program, and we're de�nitely
not going to set out to solve the problem by hand.

One solution is a form of data compression. We can get around the memory
problem by putting two stack elements into each register. We can't �t two six-
digit decimal numbers into a register (not on this ten-digit calculator, though
this could be done on the more recent twelve-digit calculators). Instead of
treating the stack element as a decimal number, we'll consider it as a base-four
number. This allows us to represent the entire element in �ve decimal digits,
and we can pack two of them into a single ten-digit number.

If you look closely at the program listing on the next page, you might see
the DNA inherited from its HP 35s and HP 30b predecessors. The simulated
subroutine starts at line 010. The next twenty steps determine whether to push
the current stack element into the top half or the bottom half of the register
indicated by the stack pointer in RI . The inverse process starts at line 054.

The routine beginning at line 119 fetches the top element of the stack (with-
out popping it). For future convenience, this value is placed into the RAN#
register so that the routine beginning at line 135 can retrieve it. (What? You
didn't know the 15C had a RAN# register?)

Like the HP 30b, the HP-15C lacks a remainder instruction. The routine
beginning at line 141 recti�es that shortcoming.

The constant 256 appearing �ve times in the program is merely 100004,
and 4, 16, and 64 are other integer powers of 4, while the 39 near the beginning
of the program is 2134, the same �number� used in two preceeding programs.
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001 42,21,11 LBL A 050 32 5 GSB 5 099 20 ×
002 42 34 CL REG 051 6 6 100 32 5 GSB 5
003 2 2 052 4 4 101 4 4
004 5 5 053 22 2 GTO 2 102 42,21, 2 LBL 2
005 6 6 054 42,21, 1 LBL 1 103 32 4 GSB 4
006 20 × 055 32 3 GSB 5 104 40 +
007 3 3 056 45 25 RCL I 105 32 5 GSB 5
008 9 9 057 48 . 106 2 2
009 40 + 058 5 5 107 5 5
010 42,21, 0 LBL 0 059 30 − 108 6 6
011 48 . 060 44 25 STO I 109 10 ÷
012 5 5 061 43,30, 0 x 6=0? 110 43 44 INT
013 45,40,25 RCL+ I 062 22 1 GTO 1 111 26 EEX
014 44 25 STO I 063 43 35 CLx 112 30 −
015 42 44 FRAC 064 43 32 RTN 113 2 2
016 43 20 x=0? 065 42,21, 1 LBL 1 114 5 5
017 22 0 GTO 0 066 33 R↓ 115 6 6
018 33 R↓ 067 2 2 116 20 ×
019 45 24 RCL (i) 068 5 5 117 40 +
020 42 44 FRAC 069 6 6 118 22 0 GTO 0
021 22 6 GTO 6 070 32 4 GSB 4 119 42,21, 3 LBL 3
022 42,21, 0 LBL 0 071 43,30, 0 x 6=0? 120 45 25 RCL I
023 33 R↓ 072 22 1 GTO 1 121 42 44 FRAC
024 26 EEX 073 32 3 GSB 3 122 43 20 x=0?
025 5 5 074 1 1 123 22 3 GTO 3
026 10 ÷ 075 6 6 124 45 24 RCL (i)
027 45 24 RCL (i) 076 32 4 GSB 4 125 43 44 INT
028 43 44 INT 077 26 EEX 126 26 EEX
029 42,21, 6 LBL 6 078 1 1 127 5 5
030 40 + 079 20 × 128 10 ÷
031 44 24 STO (i) 080 32 5 GSB 5 129 22 6 GTO 6
032 32 3 GSB 3 081 4 4 130 42,21, 3 LBL 3
033 2 2 082 32 4 GSB 4 131 45 24 RCL (i)
034 5 5 083 40 + 132 42 44 FRAC
035 6 6 084 42 31 PSE 133 42,21, 6 LBL 6
036 43,30, 7 x>y? 085 4 4 134 44 36 STO RAN#
037 22 1 GTO 1 086 32 5 GSB 5 135 42,21, 5 LBL 5
038 32 5 GSB 5 087 1 1 136 45 36 RCL RAN#
039 4 4 088 6 6 137 26 EEX
040 32 4 GSB 4 089 32 4 GSB 4 138 5 5
041 4 4 090 40 + 139 20 ×
042 20 × 091 4 4 140 43 32 RTN
043 32 5 GSB 5 092 20 × 141 42,21, 4 LBL 4
044 1 1 093 32 5 GSB 5 142 10 ÷
045 6 6 094 6 6 143 42 44 FRAC
046 32 4 GSB 4 095 4 4 144 4 4
047 40 + 096 32 4 GSB 4 145 20 ×
048 4 4 097 40 + 146 43 44 INT
049 20 × 098 4 4 147 43 32 RTN
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3.4 HP-BASIC (HP 38g/39g/40g)
Because HP-BASIC provide for neither recursion nor subroutines, we end up
with a helper program to move one disk from peg A to peg B.

.HANOI.MOVE
M9(B,1)+1�M9(B,1):

M9(A,M9(A,1))�M9(B,M9(B,1)):

M9(A,1)-1�M9(A,1)

DISP 1;A "->" B:

This subprogram is used by the main program, which prompts for the number
of disks, sets up the initial con�guration, then proceeds to solve the puzzle by
displaying the �from� and �to� pegs for each move.

HANOI
INPUT N;"TOWERS OF HANOI";"DISKS";"ENTER NUMBER";5:

INT(MAX(2,MIN(64,N)))�N:

REDIM M9;3,N+2

N+1�M9(1,1):

1�M9(2,1):

1�M9(3,1):

FOR I=1 TO N;

I�M9(1, I+2):

END:

1+N MOD 2�D:

1�A:1+D�B:

RUN ".HANOI.MOVE":B�S:

DO

1+(1==S)�A:

3-(3==S)�B:

IF M9(A,M9(A,1))<M9(B,M9(B,1))

THEN A�I:B�A:I�B:

END:

RUN ".HANOI.MOVE":

S�A:1+(D+S-1)MOD 3�B:

RUN ".HANOI.MOVE":B�S:

UNTIL

M9(3,1)==N+2:

END:

REDIM M9;1,1
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